Study Examines Environmental Impacts, Safety and Costs of Nation’s Drinking Water Pipes

April 2017 PVCPA Report

Click this image to follow a link to the PVCPA report

The Uni-Bell PVC Pipe Association (PVCPA), which represents U.S. and Canadian manufacturers of PVC pipe, announced the completion of the first comprehensive environmental and performance review of water and sewer pipes in North America. The study used life cycle assessment methodology to evaluate the cradle-to-grave sustainability of commonly used drinking water and sewer pipe materials, including polyvinylchloride (PVC), concrete, ductile iron, and high density polyethylene pipes over a 100-year service period.

Sustainable Solutions Corporation (SSC), a sustainability consulting firm, was hired by PVCPA to conduct the study. SSC’s engineers used the ISO 14040 series life cycle assessment (LCA) standards from the International Organization for Standardization (ISO) to evaluate PVC pipe’s environmental footprint. The peer-reviewed report also examines other pipe products based on durability, performance and environmental data and statistics when available.

“The PVC pipe industry is the only pipe material that has transparently reported their sustainability and environmental impacts,” said Tad Radzinski, SSC president. “This is welcome information for both policy makers and utility professionals to make fully informed decisions in their efforts to improve underground infrastructure with sustainable products.”

The report contains a robust set of data utility officials and engineers can use for their asset management plans and life cycle cost assessments for water and sewer piping. The 100-year LCA methodology also helps utilities assess and minimize water quality risks, as well as reduce operations, maintenance and repair costs. More than 200 sources and studies were examined to provide the most up-to-date and thorough industry review of the health, safety, performance characteristics, and sustainability attributes of the different pipe materials available.

“This study provides critical information for federal, state and local policy makers as they look to modern piping materials to help rebuild the nation’s crumbling underground infrastructure. Clean water was identified as a high priority by President Trump and this report confirms that safer, more cost-effective and more durable PVC pipe is key to upgrading America’s drinking water and wastewater systems,” said Bruce Hollands, PVCPA executive director.

To read the complete report follow this link.

Based on the results of this study, PVC pipe provides a competitive environmental and economic advantage for its use in a variety of water and sewer infrastructure projects, including life cycle cost advantages and the opportunity to substantially reduce GHGs compared to other materials. PVC pipe addresses affordability concerns and enables communities to work towards meeting their sustainable infrastructure goals because of its durability, low break rate, corrosion resistance and long-lasting performance.


“The federal government is committed to spending $1 trillion to upgrade the nation’s infrastructure, yet it’s estimated that $2 trillion is needed for new water and sewer pipes alone,” said Hollands. “Since PVC pipe can be up to 70 percent less expensive than iron pipe, lasts longer with greater pumping efficiency, it’s the best choice to replace America’s drinking water systems.”

The Life Cycle Assessment of PVC Water and Sewer Pipe and Comparative Sustainability Analysis of Pipe Materials report also makes reference to the 2015 Environmental Product Declaration (EPD) for PVC Pipe, which complies with ISO 14025 standards and was independently certified by global health organization NSF International.

“This study shows that PVC pipe is the safest pipe material available. Water utilities aren’t sacrificing safety, longevity, or system performance when they choose PVC pipe—in fact, they are getting the biggest bang for their buck when they do,” said Hollands.

// ** Advertisement ** //
// ** Advertisement ** //

See Discussion, Leave A Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.